Abstract

Preimplantation genetic haplotyping (PGH) proof-of-principle was demonstrated by multiple displacement amplification (MDA) of single buccal cells from a female donor and genotyping using 12 polymorphic markers within the dystrophin gene; the known paternal genotype enabled identification of the paternal haplotype in the MDA products despite 27% allele dropout. MDA amplified DNA from 49 single human blastomeres with 100% success. The MDA products were genotyped using a total of 57 polymorphic markers for chromosomes 1, 7, 13, 18, 21, X and Y; 72% of alleles amplified providing results at 90% of the loci tested. A PGH cycle was carried out for Duchenne muscular dystrophy. One embryo was biopsied: PGH showed a non-carrier female, which was transferred with no resulting pregnancy. A PGH cycle was carried out for cystic fibrosis. Seven embryos were biopsied and PGH allowed the exclusion of 2 affected embryos; a carrier and a non-carrier embryo were transferred resulting in an on-going twin pregnancy. PGH represents a paradigm shift in embryo diagnosis, as one panel of markers can be used for all carriers of the same monogenic disease, bypassing the need for development of mutation-specific tests, and widening the scope and availability of preimplantation genetic testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.