Abstract

We present the disconnection tableau calculus, which is a free-variable clausal tableau calculus where variables are treatedin a nonrigidmanner. The calculus essentially consists of a single inference rule, the so-called linking rule, which strongly restricts the possible clauses in a tableau. The method can also be viewed as an integration of the linking rule as used in Plaisted’s linking approach into a tableau format. The calculus has the proof-theoretic advantage that, in the case of a satisfiable formula, one can characterise a model of the formula, a property which most of the free-variable tableau calculi lack. In the paper, we present a rigorous completeness proof and give a procedure for extracting a model from a finitely failed branch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.