Abstract

A series of novel catalysts with bimetallic Sn-W oxides uniformly dispersed on reduced graphene oxide (denoted as Sn-W/RGO) were successfully prepared via a conventional one-pot hydrothermal method. Interestingly, it was found that the introduction of Sn could significantly improve the catalytic activities compared with single WO3/graphene catalyst for selective oxidation of alcohols using H2O2 without organic solvents and additives. Subsequently, the catalysts were characterized by FT-IR, XRD, Raman, FESEM, EDS, HRTEM, XPS and N2 adsorption-desorption to investigate the promotional synergistic effect of Sn among catalyst structure, surface properties and catalytic performance. The results revealed that the incorporation of Sn had induced the formation of hexagonal WO3 with dominant exposed (001) and (200) planes, meanwhile, doping Sn could dramatically increase the specific surface area, change the structural properties and enhance the interactions between Sn-W oxides and graphene, which were beneficial to the improvement of catalytic performance. Additionally, reaction parameters (temperature, time, oxidant dosage and catalyst amount) were also explored. Both aryl and alkyl alcohols exhibited high conversion and selectivity to corresponding target products over the catalyst. And delightedly, the robust catalyst could be reused for five times without significant loss in catalytic efficiency. This work demonstrates the promotional synergistic effect of Sn in a novel Sn-doped WO3/RGO catalyst and makes it a promising candidate in green oxidation of alcohols under mild reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.