Abstract

Breast cancer is the most common and high-incidence cancer in women. It is mainly treated by surgery combined with chemoradiation. The main challenge in treating breast cancer patients is developing resistance to chemotherapeutics, so it is urgent to find potential strategies that can improve the chemotherapy effect of patients. In this study, we aimed to explore the role of GSDME methylation in the sensitivity of chemotherapy for breast cancer. Here, we identified breast cancer MCF-7 / Taxol cells models using quantitative real-time PCR (qRT-PCR), Western blotting (WB), and cell counting kit-8 (CCK-8) analyses. Epigenetic changes in it were detected by Methylated DNA immunoprecipitation-sequencing and methylation-specific PCR. The expression level of GSDME in breast cancer cells was observed by qPCR and WB analyses. CCK-8 and colony formation assay were used to detect cell proliferation. Finally, pyroptosis was detected by LDH assay, flow cytometry, and WB analyses. Our results indicate that ABCB1 mRNA and p-GP expression are significantly increased in breast cancer MCF-7 / Taxol cells. GSDME enhancer methylation was found in drug-resistant cells and was associated with the down-regulation of GSDME expression. After treatment with decitabine (5-Aza-2'-deoxycytidine), the demethylation of GSDME induced the occurrence of pyroptosis and thereby inhibited the proliferation of MCF-7 / Taxol cells. We found that the upregulation of GSDME enhances the chemosensitivity of MCF-7 / Taxol cells to paclitaxel by inducing pyroptosis. Taken together, we identified decitabine increases GSDME expression through DNA demethylation and induces pyroptosis, thus increasing the chemosensitivity of MCF-7 / Taxol cells to Taxol. Use of decitabine / GSDME / pyroptosis-based treatment strategies may be a new way to overcome the resistance of breast cancer to paclitaxel chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.