Abstract

Acetate derived from electrocatalytic CO2 reduction represents a potential low-carbon synthesis approach. However, the CO2-to-acetate activity and selectivity are largely inhibited by the low surface coverage of in situ generated *CO, as well as the inefficient ethenone intermediate formation due to the side reaction between CO2 and alkaline electrolytes. Tuning catalyst microenvironments by chemical modification of the catalyst surface is a potential strategy to enhance CO2 capture and increase local *CO concentrations, while it also increases the selectivity of side reduction products, such as methane or ethylene. To solve this challenge, herein, we developed a hydrophilic amine-tailed, dendrimer network with enhanced *CO intermediate coverage on Cu catalytic sites while at the same time retaining the in situ generated OH- as a high local pH environment that favors the ethenone intermediate toward acetate. The optimized amine-network coordinated Cu catalyst (G3-NH2/Cu) exhibits one of the highest CO2-to-acetate Faradaic efficiencies of 47.0% with a partial current density of 202 mA cm-2 at -0.97 V versus the reversible hydrogen electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.