Abstract
Two-dimensional (2D) semiconductors have attracted tremendous interest as atomically thin channels that could facilitate continued transistor scaling. However, despite many proof-of-concept demonstrations, the full potential of 2D transistors has yet to be determined. To this end, the fundamental merits and technological limits of 2D transistors need a critical assessment and objective projection. Here we review the promise and current status of 2D transistors, and emphasize that widely used device parameters (such as carrier mobility and contact resistance) could be frequently misestimated or misinterpreted, and may not be the most reliable performance metrics for benchmarking 2D transistors. We suggest that the saturation or on-state current density, especially in the short-channel limit, could provide a more reliable measure for assessing the potential of diverse 2D semiconductors, and should be applied for cross-checking different studies, especially when milestone performance metrics are claimed. We also summarize the key technical challenges in optimizing the channels, contacts, dielectrics and substrates and outline potential pathways to push the performance limit of 2D transistors. We conclude with an overview of the critical technical targets, the key technological obstacles to the 'lab-to-fab' transition and the potential opportunities arising from the use of these atomically thin semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.