Abstract

The angular vestibulo-ocular reflex (aVOR) and optokinetic nystagmus (OKN) were elicited simultaneously at low frequencies to study effects of habituation of the velocity storage time constant in the vestibular system on motion sickness. Twenty-nine subjects, eleven of whom were susceptible to motion sickness from common transportation, were habituated by sinusoidal rotation at 0.017 Hz at peak velocities from 5 to 20°/s, while they watched a full-field OKN stimulus. The OKN stripes rotated in the same direction and at the same frequency as the subjects, but at a higher velocity. This produced an OKN opposite in direction to the aVOR response. Motion sickness sensitivity was evaluated with off-vertical axis rotation (OVAR) and by the response to transportation before and after 5 days of visual-vestibular habituation. Habituation did not induce motion sickness or change the aVOR gains, but it shortened the vestibular time constants in all subjects. This greatly reduced motion sickness produced by OVAR and sensitivity to common transport in the motion susceptible subjects, which persisted for up to 18 weeks. Two motion susceptible subjects who only had aVOR/OKN habituation without being tested with OVAR also became asymptomatic. Normal subjects who were not habituated had no reduction in either their aVOR time constants or motion sickness sensitivity. The opposing aVOR/OKN stimulation, which has not been studied before, was well tolerated, and for the first time was an effective technique for rapid and prolonged habituation of motion sickness without exposure to drugs or other nauseating habituation stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.