Abstract

Ca(2+) can stimulate cyclic nucleotide synthesis, but it is not known whether this signaling occurs in nerve terminals in response to activity. Here, in vivo imaging of Drosophila motoneuron terminals shows that activity rapidly induces a long-lasting signal from a transgenically expressed optical indicator based on the epac1 (exchange protein directly activated by cAMP 1) cAMP-binding domain. The epac1-cAMP sensor (camps) response in synaptic boutons depends on extracellular Ca(2+) and ryanodine receptor-mediated Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum. However, mutations that inhibit rutabaga Ca(2+)-stimulated adenylyl cyclase and dunce cAMP-specific phosphodiesterase (PDE) have no effect. Instead, the activity-dependent presynaptic epac1-camps signal reflects elevation of cGMP in response to nitric oxide-activated guanylyl cyclase. Posttetanic presynaptic cGMP is long-lived because of limited PDE activity. Thus, nerve terminal biochemical signaling induced by brief bouts of activity temporally summates on a time scale orders of magnitude longer than fast transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.