Abstract
Although there are published studies of proline biochemistry and nutrition in cultured cells and postnatal animals, little is known about proline metabolism and function in the conceptus (embryo/fetus, associated placental membranes, and fetal fluids). Because of the invasive nature of biochemical research on placental and fetal growth, animal models are often used to test hypotheses of biological importance. Recent evidence from studies with pigs and sheep shows that proline is a major substrate for polyamine synthesis via proline oxidase, ornithine aminotransferase, and ornithine decarboxylase in placentae. Both porcine and ovine placentae have a high capacity for proline catabolism and polyamine production. In addition, allantoic and amniotic fluids contain enzymes to convert proline into ornithine, which is delivered through the circulation to placental tissues. There is exquisite metabolic coordination among integrated pathways that support highest rates of polyamine synthesis and concentrations in placentae during early gestation when placental growth is most rapid. Interestingly, reduced placental and fetal growth are associated with reductions in placental proline transport, proline oxidase activity, and concentrations of polyamines in gestating dams with either naturally occurring or malnutrition-induced growth retardation. Conversely, increasing proline availability in maternal plasma through nutritional or pharmacological modulation in pigs and sheep enhances concentrations of proline and polyamines in placentae and fetal fluids, as well as fetal growth. These novel findings suggest an important role for proline in conceptus metabolism, growth and development, as well as a potential treatment for intrauterine growth restriction, which is a significant problem in both human medicine and animal agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.