Abstract

Hypoxia-inducible factor (HIF) is a master transcriptional regulator of hypoxia-inducible genes and consists of a labile alpha subunit (such as HIF1alpha) and a stable beta subunit (such as HIF1beta or ARNT). In the presence of oxygen, HIFalpha family members are hydroxylated on one of two conserved prolyl residues by members of the egg-laying-defective nine (EGLN) family. Prolyl hydroxylation generates a binding site for a ubiquitin ligase complex containing the von Hippel-Lindau (VHL) tumor suppressor protein, which results in HIFalpha destruction. In addition, the HIFalpha transcriptional activation function is modulated further by asparagine hydroxylation by FIH (factor-inhibiting HIF), which affects recruitment of the coactivators p300 and CBP. These findings provide new mechanistic insights into oxygen sensing by metazoans and are the first examples of protein hydroxylation being used in intracellular signaling. The existence of three human EGLN family members, as well as other putative hydroxylases, raises the possibility that this signal is used in other contexts by other proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.