Abstract

Many mutational and structural analyses of the RNA signals propose a hypothesis that programmed frameshifting occurs by a specific interaction between ribosome and frameshifting signals comprised of a shifty site and a downstream RNA structure, in which the exact nature of the interaction has not yet been proven. To address this question, we analyzed the frameshifting sequence elements from animal or plant virus in yeast and Escherichia coli. Frameshifting efficiencies varied in yeast, but not in E. coli, depending on the specific conformation of mouse mammary tumor virus (MMTV) RNA pseudoknot. Similar changes in frameshifting efficiencies were observed in yeast, but not in E. coli, for the mutations in frameshifting sequence elements from cereal yellow dwarf virus serotype RPV (CYDV-RPV). The differential response of MMTV or CYDV-RPV frameshifting signal to prokaryotic and eukaryotic translational machineries implies that ribosome pausing alone is insufficient to mediate frameshifting, and additional events including specific interaction between ribosome and RNA structural element are required for efficient frameshifting. These results supports the hypothesis that frameshifting occurs by a specific interaction between ribosome and frameshifting signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.