Abstract

Unsharp measurements are widely seen as the key resource for recycling the nonlocality of an entangled state shared between several sequential observers. Contrasting this, we here show that nonlocality can be recycled using only standard, projective, qubit measurements. Focusing on the Clauser-Horne-Shimony-Holt inequality and allowing parties to share classical randomness, we determine the optimal trade-off in the magnitude of Bell violations for a maximally entangled state. We then find that nonmaximally entangled states make possible larger sequential violations, which contrasts the standard Clauser-Horne-Shimony-Holt scenario. Furthermore, we show that nonlocality can be recycled using projective qubit measurements even when no shared classical randomness is available. We discuss the implications of our results for experimental implementations of sequential nonlocality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.