Abstract

We present a high-order, fully explicit, asymptotic-preserving projective integration scheme for the nonlinear BGK equation. The method first takes a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution. Then, the time derivative is estimated and used in an (outer) Runge–Kutta method of arbitrary order. Based on the spectrum of the linearized BGK operator, we deduce that, with an appropriate choice of inner step size, the time step restriction on the outer time step as well as the number of inner time steps is independent of the stiffness of the BGK source term. We illustrate the method with numerical results in one and two spatial dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.