Abstract

The mathematics of matrix models for age- and/or stage-structured population dynamics substantiates the use of the dominant eigenvalue λ 1 of the projection matrix L as a measure of the growth potential, or of adaptation, for a given species population in modern plant or animal demography. The calibration of L = T +F on the “identified-individuals-of-unknown-parents” kind of empirical data determines precisely the transition matrix T, but admits arbitrariness in the estimation of the fertility matrix F. We propose an adaptation principle that reduces calibration to the maximization of λ 1(L) under the fixed T and constraints on F ensuing from the data and expert knowledge. A theorem has been proved on the existence and uniqueness of the maximizing solution for projection matrices of a general pattern. A conjugated maximization problem for a “potential-growth indicator” under the same constraints has appeared to be a linear-programming problem with a ready solution, the solution testing whether the data and knowledge are compatible with the population growth observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.