Abstract
We present a novel generalized constrained convex optimization model for multiagent systems that contains both the local, coupled equality, and inequality constraints, and a global resource allocation constraint. This model unifies the traditional constrained optimization problem, the resource allocation problem, and the economic dispatch problem. Unlike the majority of literature where each local objective function is required to be convex, we only require a milder condition that the global objective function is convex. The gradient of the global Lagrangian is estimated locally by each agent using the dynamic average consensus protocol. Synchronously, modified primal-dual dynamics produce the optimal solution via the estimated gradient. The generalized Lagrange multiplier method is introduced to avoid the usual positive projections in the presence of inequality constraints. This leads to smooth dynamics and a continuous Lyapunov derivative, which enables the exponential stability analysis. Simulation examples support the proposed distributed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.