Abstract

Gallium oxide (Ga2O3) is an emerging ultra-wide bandgap semiconductor that has unique properties ideal for high-power, high-temperature, optoelectronic, and sensing applications and has piqued interest over the last decade. It has the potential to be technologically and economically superior to commercially available wide bandgap semiconductor materials, such as silicon carbide and gallium nitride, because its wider bandgap enables increased breakdown voltages and lower on-state resistances, and its ability to be grown from melt enable cost-competitive economics. In this study, we present a techno-economic analysis that projects the cost of 6″ β-Ga2O3 wafers fabricated from crystals grown via edge-defined film-fed growth (EFG). At a manufacturing volume of 5000 wafers per month, we predict a unit cost of $320 for a 6″ EFG grown β-Ga2O3 epi-wafer. We determine that, when calculated using 2021 iridium crucible costs, EFG has a 2× cost advantage compared to previously reported epi-wafers grown via the Czochralski (CZ) method. We further identify key cost parameters for 6″ β-Ga2O3 epi-wafers and present cost-sensitivity analysis of their impact on the final cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.