Abstract

BackgroundThe epidermal growth factor (EGF) and EGF receptor (EGFR) families play important roles in the hyperplastic growth of several tissues as well as tumor growth. Since synovial hyperplasia in rheumatoid arthritis (RA) resembles a tumor, involvement of the EGF/EGFR families in RA pathology has been implied. Although several reports have suggested that ErbB2 is the most important member of the EGFR family for the synovitis in RA, it remains unclear which members of the EGF family are involved. To clarify the EGF-like growth factors involved in the pathology of RA, we investigated the expression levels of seven major EGF-like growth factors in RA patients compared with those in osteoarthritis (OA) patients and healthy control subjects.MethodsThe expression levels of seven EGF-like growth factors and four EGFR-like receptors were measured in mononuclear cells isolated from bone marrow and venous blood, as well as in synovial tissues, using quantitative RT-PCR. Further evidence of gene expression was obtained by ELISAs. The proinflammatory roles were assessed by the growth-promoting and cytokine-inducing effects of the corresponding recombinant proteins on cultured fibroblast-like synoviocytes (FLS).ResultsAmong the seven EGF-like ligands examined, only amphiregulin (AREG) was expressed at higher levels in all three RA tissues tested compared with the levels in OA tissues. The AREG protein concentration in RA synovial fluid was also higher than that in OA synovial fluid. Furthermore, recombinant human AREG stimulated FLS to proliferate and produce several proinflammatory cytokines, including angiogenic cytokines such as interleukin-8 and vascular endothelial growth factor (VEGF), in a dose-dependent manner. The VEGF mRNA levels in RA synovia and VEGF protein concentrations in RA synovial fluid were significantly higher than those in the corresponding OA samples and highly correlated with the levels of AREG.ConclusionThe present findings suggest that AREG functions to stimulate synovial cells and that elevated levels of AREG may be involved in the pathogenesis of RA.

Highlights

  • The epidermal growth factor (EGF) and EGF receptor (EGFR) families play important roles in the hyperplastic growth of several tissues as well as tumor growth

  • Since plateletderived growth factor (PDGF) and fibroblast growth factor (FGF) stimulate DNA synthesis and proliferation of fibroblast-like synoviocytes (FLS) cultured in medium containing low concentrations of serum [10] and histochemical studies have revealed upregulated expression levels of PDGF and FGF and their receptors in rheumatoid arthritis (RA) synovial tissues [11,12,13], these molecules are considered to be the major contributors to synovial hyperplasia [2,14]

  • We examined the extents of involvement of EGF family members in RA pathology by investigating the expression of seven major EGF-like growth factors, namely EGF, AREG, EREG, transforming growth factor α(TGFα), heparin-binding EGF-like growth factor (HB-EGF), betacellulin (BTC) and neuregulin-1 (NRG1), in synovial tissues and mononuclear cells isolated from bone marrow and venous blood

Read more

Summary

Introduction

The epidermal growth factor (EGF) and EGF receptor (EGFR) families play important roles in the hyperplastic growth of several tissues as well as tumor growth. Since synovial hyperplasia in rheumatoid arthritis (RA) resembles a tumor, involvement of the EGF/EGFR families in RA pathology has been implied. Tyrosine-phosphorylated proteins are augmented in RA-FLS, and several growth factors whose receptors possess tyrosine kinase activities have been reported to promote the tumor-like behavior of RA synovial membranes [6,7,8,9]. Since plateletderived growth factor (PDGF) and fibroblast growth factor (FGF) stimulate DNA synthesis and proliferation of FLS cultured in medium containing low concentrations of serum [10] and histochemical studies have revealed upregulated expression levels of PDGF and FGF and their receptors in RA synovial tissues [11,12,13], these molecules are considered to be the major contributors to synovial hyperplasia [2,14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.