Abstract

Intrinsic β-cell circadian clocks are important regulators of insulin secretion and overall glucose homeostasis. Whether the circadian clock in β-cells is perturbed following exposure to prodiabetogenic stressors such as proinflammatory cytokines, and whether these perturbations are featured during the development of diabetes, remains unknown. To address this, we examined the effects of cytokine-mediated inflammation common to the pathophysiology of diabetes, on the physiological and molecular regulation of the β-cell circadian clock. Specifically, we provide evidence that the key diabetogenic cytokine IL-1β disrupts functionality of the β-cell circadian clock and impairs circadian regulation of glucose-stimulated insulin secretion. The deleterious effects of IL-1β on the circadian clock were attributed to impaired expression of key circadian transcription factor Bmal1, and its regulator, the NAD-dependent deacetylase, Sirtuin 1 (SIRT1). Moreover, we also identified that Type 2 diabetes in humans is associated with reduced immunoreactivity of β-cell BMAL1 and SIRT1, suggestive of a potential causative link between islet inflammation, circadian clock disruption, and β-cell failure. These data suggest that the circadian clock in β-cells is perturbed following exposure to proinflammatory stressors and highlights the potential for therapeutic targeting of the circadian system for treatment for β-cell failure in diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.