Abstract

Linerless composite cryogenic tank is significant for weight reducing in launch vehicles, and a microscopic-to-macroscopic model is presented in this paper to capture the burst behaviors of the carbon-fiber-reinforced-composite cryotank. The hierarchical framework starts from the material components (carbon fiber and matrix) at microlevel, filament winding layups at mesolevel, and pressure tank at macrolevel. The locally exact homogenization theory is first introduced to generate stiffness degeneration coefficients with matrix crack and fiber fracture failure, which is compared with previous literature and good agreements are obtained. And 1° finite element representative model is then established considering spiral filament winding, and progressive damage analysis is finally conducted based on Hashin and Maximum stress criteria complied with ANSYS Parametric Design Language. In addition, the thermodynamic analysis is demonstrated by considering the integrated design structure with a corrugated sandwich cylindrical shell under multiple physical fields. The proposed multiscale model provides references for fuel cryotank design from a microscopic perspective to predict the burst pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.