Abstract

To report the 30-months' course of macular dystrophy in a patient with genetically confirmed spinocerebellar ataxia type1 (SCA1). Detailed ophthalmological examinations including best-corrected visual acuity (BCVA), perimetry, multimodal fundus imaging, and electrophysiological recordings were performed on a 52-year-old woman with SCA1. The number of CAG sequence repeats of the candidate gene was verified. The baseline decimal BCVA was 0.2 OD and 0.3 OS. Goldman perimetry showed relative central scotomas and slight enlargements of Mariotte blind spot bilaterally. Ophthalmoscopy revealed no abnormalities in the macula and optic disk. Fundus autofluorescence (FAF) showed a circular hyperautofluorescence and round-shaped hypoautofluorescence in the macula. Optical coherence tomography (OCT) showed a loss of the interdigitation zone and ellipsoid zone (EZ) in the macula. Full-field scotopic and photopic Full-field electroretinograms (ERGs) were normal, and multifocal ERGs were decreased in the central area. After 30months, the BCVA had not changed, but the FAF showed a spark-like hypoautofluorescence in the macula. The abnormal area of the EZ had expanded toward the periphery, and the rate of EZ loss was 199.7%/year OD and 206.8%/year OS. Genetic examinations revealed an increase in the number of heterozygous CAG repeats in the ATXN1 gene, and the CAG repeat number of the mutant allele ranged from 43 to 48. The full-field scotopic and photopic ERGs were normal. The mfERGs were significantly smaller in the central region. OCT demonstrated bilateral photoreceptor atrophy in the macula, and the rate of EZ loss was more rapid than in other macular dystrophies. Spark-like hypoautofluorescence appeared during the course of the disease process which might be a specific feature of SCA1-related retinopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.