Abstract
We report herein on recent studies related to nonaqueous magnesium electrochemistry and R&D of rechargeable magnesium batteries. Extensive attempts have been made to examine electrolyte systems based on ionic liquids as potential solutions for nonaqueous magnesium batteries. In general, magnesium electrodes are reactive with many imidazolium-based ionic liquids. In those liquids in which Mg electrodes are apparently stable, they develop a blocking passivation. It was possible to develop improved solutions for rechargeable magnesium batteries based on mixtures of THF, tetraglyme (where the high boiling point of the polyether improves the safety features), and complexes based on Lewis acid–Lewis base reactions between AlCl 2R and MgR 2 or RMgCl. The choice of the type of Lewis base, the R group and the appropriate acid–base ratios enables a reasonable specific conductivity to be obtained, 100% cycling efficiency of Mg electrodes, and a wide electrochemical window, up to 2.4 V. This work included rigorous studies by Raman spectroscopy, electron microscopy, ICP, and a variety of electrochemical techniques. In parallel, Mg insertion cathodes based on cubic TiS 2, NiS x , NiSSe and CuS x were also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.