Abstract

Metal oxides are of much interest in a large number of applications, ranging from microelectronics to catalysis, for which reducing the dimensions to the nanoscale is demanded. For many of these applications, the nano-materials need to be arranged in an orderly fashion on a substrate. A typical approach is patterning thin films using lithography, but in the case of functional oxides, this is restricted to sizes down to about 100 nm due to the structural damage caused at the boundaries of the material during processing having a strong impact on the properties. In addition, for applications in which multifunctional or hybrid materials are requested, as in the case of multiferroic composites, standard top-down methods are inadequate. Here, we evaluate different approaches suitable to obtain large areas of ordered nano-sized structures and nanocomposites, with a particular focus on the literature of multiferroic nanocomposites, and we highlight the polymer-templating method as a promising low-cost alternative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.