Abstract

The sustainability of ever more sophisticated artificial intelligence relies on the continual development of highly energy‐efficient and compact computing hardware that mimics the biological neural networks. Recently, the neural firing properties have been widely explored in various spiking neuron devices, which could emerge as the fundamental building blocks of future neuromorphic/in‐memory computing hardware. By leveraging the intrinsic device characteristics, the device‐based spiking neuron has the potential advantage of a compact circuit area for implementing neural networks with high density and high parallelism. However, a comprehensive benchmark that considers not only the device but also the peripheral circuit necessary for realizing complete neural functions is still lacking. Herein, the recent progress of emerging spiking neuron devices and circuits is reviewed. By implementing peripheral analog circuits for supporting various spiking neuron devices in the in‐memory computing architecture, the advantages and challenges in area and energy efficiency are discussed by benchmarking various technologies. A small or even no membrane capacitor, a self‐reset property, and a high spiking frequency are highly desirable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.