Abstract

Monads are widely used in Haskell for modeling computational effects, but defining monads remains a daunting challenge. Since every part of a monad's definition depends on its computational effects, programmers cannot leverage the common behavior of all monads easily and thus must build from scratch each monad that models a new computational effect.I propose the Unimo framework which allows programmers to define monads and monad transformers in a modular manner. Unimo contains a heavily parameterized observer function which enforces the monad laws, and programmers define a monad by invoking the observer function with arguments that specify the computational effects of the monad. Since Unimo provides the common behavior of all monads in a reusable form, programmers no longer need to rebuild the semantic boilerplate for each monad and can instead focus on the more interesting and rewarding task of modeling the desired computational effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.