Abstract

Magnetic mesoporous silica nanotubes were produced from carbon nanotubes using a well-controlled programmed synthesis method and were characterized by TEM, XRD, XPS, N2 adsorption–desorption and VSM. The well-designed nanotubes had a large specific surface area (1017 m2 g−1), a highly open mesoporous structure (∼3.2 nm) and high magnetization (18.6 emu g−1). Ultrafine gold nanoparticles were successfully supported on the thiol-modified nanotubes by a co-precipitation method. These unique multicomponent nanotubes showed high performance in the catalytic reduction of 4-nitrophenol (with a conversion of 99% in 6 min), and styrene epoxidation with high conversion (65%) and selectivity (58%). Interestingly, the new catalysts could be recovered by magnetic separation from the reaction mixture and could be recycled several times without any significant loss in activity. The unique nanostructure of the nanotubes resulted in a novel, stable and easy to use catalyst system for application in various industrial processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.