Abstract

The actual role of programmed cell death (PCD) in embryonic processes and the extrinsic signals that define the death fate in developing cells are still poorly understood. Here, we show that during secondary palate shelf fusion in the mouse, PCD appeared in the medial edge epithelia (MEE) of the anterior region only after shelf contact. Contact was necessary for efficient cell death activation in the MEE. However, exogenous all-trans-retinoic acid (RA) increased cell death independently of contact. Competence to induce cell death by contact or by RA exposure was obtained when the MEE were close to touch. Endogenous RA is a relevant regulator of the secondary palate PCD since this was reduced by a retinol dehydrogenase inhibitor and an RAR specific antagonist. Bmp-7 expression was positively regulated by RA. However, BMP-7 was unable to activate cell death within the palate tissue and NOGGIN, a natural BMP antagonist, did not block PCD. Reduction of PCD at the MEE directly with a caspase inhibitor or by inhibiting retinol dehydrogenase resulted in unfused palate shelves, but adhesion was not affected. In contrast, exogenous RA also blocked fusion, but in this situation the increased cell death within the MEE appeared to affect adhesion, thereby causing cleft palate in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.