Abstract

Cessation of milk removal causes mammary tissue involution, which in rodents is characterized by extensive tissue degeneration and loss of the majority of luminal epithelial cells by apoptosis. In contrast, bovine mammary tissue shows little histological evidence of tissue remodelling between lactations. In this study, we combined histology with molecular biology to examine the cellular and molecular changes in bovine mammary tissue on cessation of milking. Oligonucleosomal laddering of genomic DNA extracted from lactating tissue indicated that a proportion of cells were dying by apoptosis. This was confirmed by terminal deoxynucleotide transferase-mediated deoxyuridine nick end-labelling of apoptotic cells in lactating tissue sections (TUNEL). One week after cessation of milking, alpha-lactalbumin and alpha S1-casein messenger RNA (mRNA) abundance had decreased by 99 and 85%, respectively, whereas lactoferrin mRNA had increased 20-fold. Drying off was also accompanied by an increase in oligonucleosomal laddering of genomic DNA, and by an increase in the proportion of TUNEL-positive cells, which were localized preferentially in regions where alveolar structure had deteriorated. Therefore, termination of lactation was associated with partial loss of the mammary cell population and dedifferentiation of the remainder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.