Abstract

Precisely identifying and killing tumor cells are diligent pursuits in oncotherapy. Synthesized gene circuits have emerged as an intelligent weapon to solve these problems. Gene circuits based on post-transcriptional regulation enable a faster response than systems based on transcriptional regulation, which requires transcription and translation, showing superior safety. In this study, synthetic-promoter-free gene circuits possessing two control layers were constructed to improve the specific recognition of tumor cells. Using split-TEV, we designed and verified the basic control layer of protein-protein interaction (PPI) sensing. Another orthogonal control layer was built to sense specific proteins. Two layers were integrated to generate gene circuits sensing both PPI and specific proteins, forming 10 logic gates. To demonstrate the utility of this system, the circuit was engineered to sense alpha-fetoprotein (AFP) expression and the PPI between YAP and 14-3-3σ, the matching profile of hepatocellular carcinoma (HCC). Gene-circuit-loaded cells distinguished HCC from other cells and released therapeutic antibodies, exhibiting in vitro and in vivo therapeutic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.