Abstract

The optoelectronic synaptic transistors with various functions, broad spectral perception, and low power consumption are an urgent need for the development of advanced optical neural network systems. However, it remains a great challenge to realize the functional diversification of the systems on a single device. 2D van der Waals (vdW) materials can combine unique properties by stacking with each other to form heterojunctions, which may provide a strategy for solving this problem. Herein, an all-2D vdW heterojunction-based programmable optoelectronic synaptic transistor based on MoS2/Ta2NiS5 heterojunctions is demonstrated. The device implements reconfigurable, multilevel non-volatile memory (NVM) states through sequential modulation of multiple optical and electrical stimuli to achieve broadband (532-808nm), energy-efficient (17.2 fJ), hetero-synaptic functionality in a bionic manner. The intrinsic working mechanisms of the photogating effect caused by band alignment and the interfacial trapping defect modulation induced by gate voltage are revealed by Kelvin-probe force microscopy (KPFM) measurements and carrier transport analysis. Overall, the (opto)electronic synaptic weight controllability for combined in-sensor and in-memory logic processors is realized by the heterojunction properties. The proposed findings facilitate the technical realization of generic all 2D hetero-synapses for future artificial vision systems, opto-logical systems, and Internet of Things (IoT) entities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.