Abstract

This study proposes a systematic inverse design framework for constructing multistable mechanical metamaterials with programmable gradients. Herein, we designed the tailored bistable cells with precisely controlled maximum instability forces through the topology optimization approach. Then, the designed bistable structures were programmed to construct the multistable mechanical metamaterials with different target gradient snapping sequences and deformation models. Consequently, the simulation and experimental results showed the feasibility of the design method, which successfully produced two- and three-dimensional mechanical metamaterial structures with different functions. Finally, we verified the expected deformation sequences and multistable behaviors of mechanical metamaterials by testing the designed specimens prepared via additive manufacturing. Overall, our findings show that the proposed design strategy offers a new paradigm for developing precisely tailored and programmable mechanical metamaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.