Abstract

espanolEste trabajo considera el problema de programar un conjunto de muestras en un laboratorio de analisis de minerales ubicado en Barranquilla Colombia. Teniendo en cuenta la comple-jidad intrinseca del proceso y la gran cantidad de variables invo-lucradas, este problema es considerado como NP-duro en sentido estricto. Por lo tanto, es posible encontrar una solucion optima en un tiempo razonablemente corto solo para instancias pequenas, las cuales en general no reflejan la realidad en la industria. Por esta razon, se propone el uso de metaheuristicas como enfoque al-ternativo en este problema con el fin de determinar, con un costo computacional bajo, la mejor secuencia para el analisis de las muestras que optimice el makespan y la tardanza total ponderada simultaneamente. Estos objetivos de optimizacion permitiran al laboratorio mejorar su productividad y el servicio al cliente respec-tivamente. Un Algoritmo Multiobjetivo de Colonia de Hormigas (MOACO) es presentado aqui. Experimentos computacionales son realizados para comparar el algoritmo propuesto con respecto a metodos exactos. Los resultados obtenidos muestran la eficiencia de nuestro algoritmo MOACO. EnglishThis paper considers the problem of schedul-ing a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it is possible to find an optimal solution in a reasonable computational time only for small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in this problem with the aim to deter-mine, with a low computational effort, the best assignation of the analysis in order to minimize the makespan and weight-ed total tardiness simultaneously. These optimization objec-tives will allow this laboratory to improve their productiv-ity and the customer service, respectively. A Multi-objective Ant Colony Optimization algorithm (MOACO) is proposed. Computational experiments are carried out comparing the proposed approach versus exact methods. Results show the efficiency of our MOACO algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.