Abstract

When checking concurrent software using a finite-state model, we face a formidable state explosion problem. One solution to this problem is dependence-based program slicing, whose use can effectively reduce verification time. It is orthogonal to other model-checking reduction techniques. However, when slicing concurrent programs for model checking, there are conversions between multiple irreplaceable models, and dependencies need to be found for variables irrelevant to the verified property, which results in redundant computation. To resolve this issue, we propose a Program Dependence Net (PDNet) based on Petri net theory. It is a unified model that combines a control-flow structure with dependencies to avoid conversions. For reduction, we present a PDNet slicing method to capture the relevant variables’ dependencies when needed. PDNet and its on-demand slicing in verifying linear temporal logic are used to significantly reduce computation cost. We implement a model-checking tool based on PDNet and its on-demand slicing and validate the advantages of our proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.