Abstract
The study aims to investigate the prognostic value of deep learning based pericoronary adipose tissue attenuation computed tomography (PCAT) and plaque volume beyond coronary computed tomography angiography (CTA) -derived fractional flow reserve (CT-FFR) in patients with percutaneous coronary intervention (PCI). A total of 183 patients with PCI who underwent coronary CTA were included in this retrospective study. Imaging assessment included PCAT, plaque volume, and CT-FFR, which were performed using an artificial intelligence (AI) assisted workstation. Kaplan-Meier survival curves analysis and multivariate Cox regression were used to estimate major adverse cardiovascular events (MACE), including non-fatal myocardial infraction (MI), stroke, and mortality. In total, 22 (12%) MACE occurred during a median follow-up period of 38.0 months (34.6-54.6 months). Kaplan-Meier analysis revealed that right coronary artery (RCA) PCAT (p = 0.007) and plaque volume (p = 0.008) were significantly associated with the increase in MACE. Multivariable Cox regression indicated that RCA PCAT (hazard ratios (HR): 2.94, 95%CI: 1.15-7.50, p = 0.025) and plaque volume (HR: 3.91, 95%CI: 1.20-12.75, p = 0.024) were independent predictors of MACE after adjustment by clinical risk factors. However, CT-FFR was not independently associated with MACE in multivariable Cox regression (p = 0.271). Deep learning based RCA PCAT and plaque volume derived from coronary CTA were found to be more strongly associated with MACE than CTFFR in patients with PCI.
Submitted Version
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have