Abstract

This paper addresses the generation maintenance scheduling (GMS) dilemma in a deregulated power system. At first, under a centralized cost minimization framework, a GMS is formulated and set as the benchmark (cost-minimization GMS). Then, the cost-minimization is changed into a profit-maximization problem of generation companies (GENCOs) and the GMS is developed as a bi-level optimization. Karush–Kuhn–Tucker conditions are applied to transform the bi-level into a single-level mixed-integer linear problem and subsequently, Nash equilibrium is obtained as the final solution for the GMS under a deregulated market (profit-maximization GMS). Moreover, to incorporate reliability and economic regulatory constraints, two rescheduling signals (incentive and penalty) are considered as coordination processes among GENCOs and independent system operators. These signals are based on energy-not-supplied and operation cost, and ensure that the result of profit-maximization GMS is in the given reliability and social cost limits, respectively. These limits are obtained from the cost-minimization GMS. Lastly, the model is evaluated on a test system. The results demonstrate applicability and challenges in GMS problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.