Abstract

Raman spectroscopy is applied for characterizing paintable displays. Few other options than Raman spectroscopy exist for doing so because of the liquid nature of functional materials. The challenge is to develop a method that can be used for estimating the composition of a single display cell on the basis of the collected three-dimensional Raman spectra. A classical least squares (CLS) model is used to model the measured spectra. It is shown that spectral preprocessing is a necessary and critical step for obtaining a good CLS model and reliable compositional profiles. Different kinds of preprocessing are explained. For each data set the type and amount of preprocessing may be different. This is shown using two data sets measured on essentially the same type of display cell, but under different experimental conditions. For model validation three criteria are introduced: mean sum of squares of residuals, percentage of unexplained information (PUN), and average residual curve. It is shown that the decision about the best combination of preprocessing techniques cannot be based only on overall error indicators (such as PUN). In addition, local residual analysis must be done and the feasibility of the extracted profiles should be taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.