Abstract

A classical problem, originated by Cohn's 1966 paper [1], is to characterize the integral domains R satisfying the property: (GEn) “every invertible n×n matrix with entries in R is a product of elementary matrices”. Cohn called these rings generalized Euclidean, since the classical Euclidean rings do satisfy (GEn) for every n>0. Important results on algebraic number fields motivated a natural conjecture: a non-Euclidean principal ideal domain R does not satisfy (GEn) for some n>0. We verify this conjecture for two important classes of non-Euclidean principal ideal domains: (1) the coordinate rings of special algebraic curves, among them the elliptic curves having only one rational point; (2) the non-Euclidean PID's constructed by a fixed procedure, described in Anderson's 1988 paper [2].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.