Abstract

Food web structure and major sources of primary production consumed by metafauna of Mad Island Marsh, a coastal saltmarsh on the NW coast of the Gulf of Mexico, were compared using stable isotopes and dietary analysis. Carbon and nitrogen isotope data were entered into a mixing model containing 5 potential production sources. Results were inconclusive due to overlapping iso- topic signatures of certain sources, but nonetheless indicated that most fishes and macroinvertebrates assimilated material derived mostly from variable mixtures of macrophytes and filamentous algae. Highest estimates of percentage of material assimilated directly or indirectly from C4 marsh grasses (ranging from 30 to 82%) were for spot Leiostomus xanthurus and Gulf killifish Fundulus grandis. Isotopic analysis could not reveal the detailed structure of predator-prey interactions at the species level; greater detail of trophic pathways was revealed by the dietary analysis. Estimates of vertical web structure (species trophic levels) by the 2 methods were largely concordant. The exceptions were 2 zooplanktivorous and detritivorous fish species and grass shrimp Palaemonetes pugio that had higher trophic levels according to nitrogen isotope ratios. For these taxa, the isotopic method more accurately indexed the number of trophic transfers than the dietary method, which depends on accurate dietary estimation for all food chain components leading to a consumer, and which assumes equal assimilation efficiencies for items found in stomach contents. The isotopic method underesti- mated trophic levels of several invertebrates, possibly due to inaccurate estimation of mean δ 15 N for production sources supporting these taxa and/or differential trophic fractionation. Together, stable isotope and dietary analyses provide a more accurate assessment of food web structure and dynam- ics of coastal marsh ecosystems than either method alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.