Abstract

This paper proposes an efficient approach for production-rate enhancement and size reduction of silicon nanoparticles produced by femtosecond (fs) double-pulse ablation of silicon in ethanol. Compared with a single pulse, the production rate is ~2.6 times higher and the mean size of the NPs is reduced by ~1/5 with a delay of 2 ps. The abnormal enhancement in the production rate is obtained at pulse delays Δt > 200 fs. The production-rate enhancement is mainly attributed to high photon absorption efficiency. It is caused by an increase in localized transient electron density, which results from the first sub-pulse ionization of ethanol molecules before the second sub-pulse arrives. The phase-change mechanism at a critical point might reduce nanoparticle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.