Abstract

Polymeric microparticles with controlled morphologies and sizes are being studied by researchers in many applications, such as for drug release, healthcare and cosmetics. Herein, spherical and porous polymeric microparticles of different sizes and morphologies by electrospray technique have been developed as a viable alternative. In this work, polylactic acid (PLA) microparticles with a spherical shape and porous morphology were successfully produced via an electrospray technique in a single step. Molecular interactions between the components and the effect of parameters, such as varying solvent compositions, flow rates and voltage on microparticle morphology, were investigated over the particle formation. It was observed that the type of solvents used is the most effective parameter in terms of particle morphology, size and distribution. When the optical microscopy and SEM images of the microparticles were examined, 3 wt.% PLA in dichloromethane (DCM) solution concentration with an applied voltage of 18 kV and a flow rate of 20 µL/min was found to be the optimum parameter combination to achieve the desired spherical and porous micron-size particles. The average diameter of the particles achieved was 3.01 ± 0.58 µm. DCM was found to be a more suitable solvent for obtaining microparticles compared to the other solvents used. Finally, particles that are obtained by electrospraying of PLA–DCM solution are porous and monodisperse. They might have excellent potential as a carrier of drugs to the targeted sides and can be used in different biomedical applications.

Highlights

  • Polymeric nano and micron-sized particles are extensively used in various areas, such as for paints and coatings, oil and gas explorations, adhesives, composites, cosmetics, personal grooming products, medicine and for fabrication of medical devices, life sciences, biotechnology, etc. [1] in recent years, the uses of submicro-/microparticles derived from natural and synthetic polymers have been investigated more for biomedical applications

  • polylactic acid (PLA) microparticles were successfully produced via the electrospray technique using different solvents including chloroform, DCM and ethanol–chloroform mixtures

  • The sizes and morphology of the prepared microparticles were optimized via well-controlled flow rates, applied voltages and solvents

Read more

Summary

Introduction

Polymeric nano and micron-sized particles are extensively used in various areas, such as for paints and coatings, oil and gas explorations, adhesives, composites, cosmetics, personal grooming products, medicine and for fabrication of medical devices, life sciences, biotechnology, etc. [1] in recent years, the uses of submicro-/microparticles derived from natural and synthetic polymers have been investigated more for biomedical applications. The production methods of polymer microparticles have become increasingly important for applications such as controlled drug delivery, medical diagnostic tests, obtaining superhydrophobic surfaces, optimum design of toughened polymeric composites and food technology [2,3,4]. Conventional manufacturing methods have many drawbacks such as the fact that they are time-consuming, the coalescence among particles and obtaining of non-homogeneous particle sizes and non-uniformity of shapes [5]. These limitations can be overcome by introducing the electrospray method. The electrospray method has huge advantages over traditional methods in terms of generating little residue, using fewer solvents, being low-cost and using high molecular weight polymers [6]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.