Abstract

Producing recombinant proteins with incorporated selenomethionine (SeMet) facilitates solving X-ray crystallographic structures of novel proteins. Production of SeMet labeled proteins in the yeast Pichia pastoris (syn. Komagataella phaffii) is difficult because SeMet is mildly toxic, reducing protein expression levels. To counteract this yield loss for a novel protease, Epicoccum sorghi chitinase modifying protein (Es-cmp), a novel disease promoting protease secreted by these plant pathogenic fungi, we isolated a yeast strain that secreted more protein. By comparing the expression level of 48 strains we isolated one that produced significantly more protein. This strain was found to be gene dosed, having four copies of the expression cassette. After optimization the strain produced Es-cmp in defined media with SeMet at levels nearly equal to that of the original strain in complex media. Also, we produced SeMet labeled protein for a homologous protease from the fungus Fusarium vanettenii, Fvan-cmp, by directly selecting a gene dosed strain on agar plates with increased zeocin. Linearization of plasmid with PmeI before electroporation led to high numbers of 1 mg/mL zeocin resistant clones with significantly increased expression compared to those selected on 0.1 mg/mL. The gene dosed strains expressing Es-cmp and Fvan-cmp allowed production of 8.5 and 16.8 mg of SeMet labeled protein from 500 mL shake flask cultures. The results demonstrate that selection of P. pastoris expression strains by plating after transformation on agar with 1 mg/mL zeocin rather than the standard 0.1 mg/mL directly selects gene dosed strains that can facilitate production of selenomethionine labeled proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.