Abstract

The aim of this study is to investigate the electrospinning of Nafion® nanofibers with poly(vinyl alcohol) (PVA) as a carrier polymer and to assess the thermal and chemical stability of resultant PVA/Nafion® nanofibers for the use in direct methanol fuel cells, in simulated conditions. Bead-free PVA/Nafion® nanofibers were produced using higher molecular weight PVA. Resultant PVA and PVA/Nafion® nanofibers were stabilized using two different methods which are BTCA crosslinking and thermal stabilization, followed by sulfonation of the PVA part. FT-IR analysis demonstrated that the membranes were stabilized and sulfonated successfully. Thermal, water, methanol and oxidative stability of the membranes were tested in addition to ion-exchange capacity. Morphological changes in the structure were analyzed using SEM analysis. Thermally stabilized PVA/Nafion® nanofibrous membrane was found to be stable against water, methanol and oxidative effects. The nanofibrous structure was well preserved after treatments, while the other membranes became a film-like material. Thermal stability of the PVA/Nafion® nanofibrous membrane was similar to that of commercial Nafion® 115 membrane up to 200℃.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.