Abstract

The production of chemical compounds from renewable resources is an important issue in building a sustainable society. In this study, Escherichia coli was metabolically engineered by introducing T7lac promoter-controlled aroF(fbr), pabA, pabB, and pabC genes into the chromosome to overproduce para-aminobenzoic acid (PABA) from glucose. Elevating the copy number of chromosomal PT7lac-pabA-pabB distinctly increased the PABA titer, indicating that elevation of 4-amino-4-deoxychorismic acid synthesis is a significant factor in PABA production. The introduction of a counterpart derived from Corynebacterium efficiens, pabAB (ce), encoding a fused PabA and PabB protein, resulted in a considerable increase in the PABA titer. The introduction of more than two copies of PT7lac-pabAB (ce-mod), a codon-optimized pabAB (ce), into the chromosome of a strain that simultaneously overexpressed aroF(fbr) and pabC resulted in 5.1 mM PABA from 55.6 mM glucose (yield 9.2%). The generated strain produced 35 mM (4.8 g L(-1)) PABA from 167 mM glucose (yield 21.0%) in fed-batch culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.