Abstract

Nickel-based superalloys are predominantly used as structural materials in high-temperature applications due to their exceptional high-temperature strength based on precipitation hardening by the coherent γ′-phase. In modern superalloys, the γ′-phase fraction can amount to 75%, at which γ′-precipitates align as cubes parallel to the 〈0 0 1〉 directions of the crystal lattice. At high temperatures and under a mechanical load, e.g. during service in gas turbines, the γ′-cubes coalesce to γ′-rafts, generating an interpenetrating microstructure of γ and γ′. By extracting one phase of this interpenetrated network, nanoporous superalloy membranes containing channel-like interconnected pores are produced. So far, this can only be achieved by applying simultaneously thermal and mechanical loads during tensile creep deformation. Here, a new production process is presented. Due to internal stresses, load-free aging of single-crystalline superalloys, e.g. CMSX-4, also generates an interpenetrating microstructure of γ and γ′. This can be utilized to manufacture nanoporous superalloy membranes in the absence of an external mechanical load. The advantage of this process is its simplicity and the potential to fabricate larger membranes than possible by the costly tensile creep deformation process currently used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.