Abstract
Femtosecond laser pulses are utilized to drive multiple ionization of formic acid dimers and the resulting ions are studied using time-of-flight mass spectrometry. The interaction of formic acid dimer with 200 fs linearly polarized laser pulses of 400 nm with intensities of up to 3.7 × 1015 W/cm2 produces a metastable carbon monoxide trication. Experimental kinetic energy release (KER) measurements of the ions are consistent with molecular dynamics simulations of the Coulomb explosion of a formic acid dimer and suggest that no significant movement occurs during ionization. KER values were recorded as high as 44 eV for CO3+, in agreement with results from a classical Molecular Dynamics simulation of fully ionized formic acid dimers. Potential energy curves for CO3+ are calculated using the multireference configuration interaction (MRCI+Q) method to confirm the existence of an excited metastable 2Σ state with a significant potential barrier with respect to dissociation. This combined experimental and theoretical effort reveals the existence of metastable CO3+ through direct observation for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.