Abstract

This report was prepared as part of the documentation of Annex 10 (Photoproduction of Hydrogen) of the IEA Hydrogen Agreement. Subtask A of this Annex concerned photo-electrochemical hydrogen production, with an emphasis on direct water splitting. However, studies of non oxygen-evolving systems were also included in view of their interesting potential for combined hydrogen production and waste degradation. Annex 10 was operative from 1 March 1995 until 1 October 1998. One of the collaborative projects involved scientists from the Universities of Geneva and Bern, and the Federal Institute of Technology in Laussane, Switzerland. A device consisting of a photoelectrochemical cell (PEC) with a WO{sub 3} photoanode connected in series with a so-called Grazel cell (a dye sensitized liquid junction photovoltaic cell) was developed and studied in this project. Part of these studies concerned the combination of hydrogen production with degradation of organic pollutants, as described in Chapter 3 of this report. For completeness, a review of the state of the art of organic waste treatment is included in Chapter 2. Most of the work at the University of Geneva, under the supervision of Prof. J. Augustynski, was focused on the development and testing of efficient WO{sub 3} photoanodes for the photoelectrochemical degradation of organic waste solutions. Two types of WO{sub 3} anodes were developed: non transparent bulk photoanodes and non-particle-based transparent film photoanodes. Both types were tested for degradation and proved to be very efficient in dilute solutions. For instance, a solar-to-chemical energy conversion efficiency of 9% was obtained by operating the device in a 0.01M solution of methanol (as compared to about 4% obtained for direct water splitting with the same device). These organic compounds are oxidized to CO{sub 2} by the photocurrent produced by the photoanode. The advantages of this procedure over conventional electrolytic degradation are that much (an order of magnitude) less energy is required and that sunlight can be used directly. In the case of photoproduction of hydrogen, as compared to water splitting, feeding the anodic compartment of the PEC with an organic pollutant, instead of the usual supporting electrolyte, will bring about a substantial increase of the photocurrent at a given illumination. Thus, the replacement of the photo-oxidation of water by the photodegradation of organic waste will be accompanied by a gain in solar-to-chemical conversion efficiency and hence by a decrease in the cost of the photoproduced hydrogen. Taking into account the benefits and possible revenues obtainable by the waste degradation, this would seem to be a promising approach to the photoproduction of hydrogen. Hydrogen sulfide (H{sub 2}S) is another waste effluent requiring extensive treatment, especially in petroleum refineries. The so-called Claus process is normally used to convert the H{sub 2}S to elemental sulfur. A sulfur recovery process developed at the Florida Solar Energy Center is described briefly in Chapter 4 by Dr. C. Linkous as a typical example of the photoproduction of hydrogen in a non oxygen-evolving system. The encouraging results obtained in these investigations of photoelectrochemical hydrogen production combined with organic waste degradation, have prompted a decision to continue the work under the new IEA Hydrogen Agreement Annex 14, Photoelectrolytic Hydrogen Production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.