Abstract

Adhesion of biofouling organism creates various problems. Efforts to explore the source of the antifouling material from marine organisms have been carried out, but it is non-cultivable mainly; its work efficiency depends on temperature, pH, concentration, and ineffective exposure time. Therefore, it is necessary to explore new sources of antifouling material by developing antifouling biocomposites from chitosan-ZnO. This study aims to determine the effect of differences in concentration of chitosan and ZnO on biocomposite characterization. This study consisted of 3 stages, 1) characterization of chitosan and ZnO; 2) production and characterization of chitosan-ZnO biocomposite; and 3) antifouling activity testing. The results showed that chitosan was completely soluble in 2% acetic acid with a viscosity of 76.4 to 79.6%, a water content of 10.92%, ash of 1.92%, nitrogen of 3.70%, and a deacetylation level of 85%. The ZnO used in this study had a particle size of 396.1-458.7 nm. Biocomposite characteristics indicated that the best treatment was chitosan 1% -ZnO 0.6 g with 0.31% swelling, 0.18% solubility film, 104.50° hydrophobic and 4.50 MPa adhesion. The results of the anti-fouling tests showed that the treatment of chitosan 1% -ZnO 0.6 g had less biofouling than other treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.