Abstract
The carbonation rate of 15−20 μm, nonporous, calcium oxide crystals has been studied over a temperature range of 550−1100 °C and a CO2 pressure range of 1−11.7 atm. At temperatures greater than 600 °C, the carbonation rate decreases more rapidly with time than would be expected from diffusion through a uniform product layer and the activation energy is initially low but increases with conversion. The product layer consists of crystalline grains, and these product layer grains grow by coalescence from less than one μm diameter to the approximate dimension of the particle. The carbonation rate can be described by a model where CO2 pressure-independent grain boundary diffusion and diffusion through the carbonate crystals act in parallel. The relative importance of bulk diffusion through the product layer crystals increases with time relative to transport through the grain boundaries and has an effective activation energy of 57 kcal/mol. Diffusion through the crystal boundaries has low activation energy and l...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.