Abstract
Serratia marcescens is a gram-negative, facultatively-anaerobic bacterium and opportunistic pathogen which produces the red pigment prodigiosin. We employed both batch culture and chemostat growth methods to investigate prodigiosin function in the producing organism. Pigmentation correlated with an increased rate of ATP production during population lag phase. Results with a lacZ transcriptional fusion to the prodigiosin (pig) biosynthetic operon revealed that operon transcription is activated by low cellular levels of ATP at high cell density. Furthermore, these data enabled estimation of the ATP per cell minimum value at which the operon is induced. Pigmented cells were found to accumulate ATP more rapidly and to multiply more quickly than non-pigmented cells during the high density growth phase. Finally, results with both batch and chemostat culture revealed that pigmented cells grow to approximately twice the biomass yield as non-pigmented S. marcescens bacteria. Prodigiosin production may, therefore, provide a growth advantage at ambient temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.