Abstract

Research in Moving Objects Databases (MOD) has addressed various aspects of storing and querying trajectories of moving objects: from modelling, through linguistic constructs and formalisms/ algebras, to indexing structures and efficient processing of different querycategories have been subjects to a large body of works. Given the architectural trends of multicore CPUs becoming a commonplace, in this work we focus on efficient processing of spatio-temporal range queries in such settings. We postulate that coupling the semantics of the problem domain into the query processing algorithms in a manner that is aware of the multicore features, can yield performance improvements that surpass the gains obtained by relying solely on the compiler-generated threads parallelization. Towards that end, we present and evaluate heuristics for processing variants spatio-temporal range queries in multicore settings by partitioning the load (i.e., data set) and assigning partial tasks to the individual cores. Our experiments demonstrate that 5-fold speed-ups can be achieved, when compared to the (semi) naive approach which relies on the compiler to generate the multicore-compatible code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.