Abstract
Currently, the data management of power enterprises faces the need to analyze data sources from multiple places. However, traditional multi-source data fabric systems have problems such as low analysis efficiency and high error rates, which brings great inconvenience to the data analysis of power enterprises. In order to improve the accuracy and efficiency of data analysis in data structure systems, the intelligent system architecture is applied to the construction of source data structure systems. The main modules are data collection, data matching, data integration, and data analysis. This article uses simulated annealing genetic algorithm to perform high-performance calculations on system timing data, thus achieving data matching. This article conducted data level data integration, feature level data integration, and decision level data integration. The access survey method was used to analyze the current data management problems faced by power companies. The evaluation and analysis of general multi-source data fabric systems and multi-source data fabric systems based on intelligent system architecture were conducted using the evaluation panel evaluation method. The analysis results showed that the operational convenience of the multi-source data fabric system based on intelligent system architecture could reach 60%–80%, which greatly improved compared to general multi-source data fabric systems; the information sharing of multi-source data fabric systems based on intelligent system architecture was greatly improved; the data processing efficiency of general multi-source data fabric systems was much lower than that of multi-source data fabric systems based on intelligent system architecture; however, the symmetry of data collection and matching in the multi-source data fabric system based on intelligent system architecture was slightly insufficient, and further improvement was still needed. In order to benefit more power companies through the intelligent system architecture based multi-source data fabric system, it was necessary to strengthen the management of data collection and matching symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.